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Brittle, polycrystalline and polyphase materials such as ceramics and fibre-reinforced brittle 
composites contain residual thermo-mechanical stresses from manufacturing. These stresses are 
concentrated at sites of microstructural inhomogeneities such as grain and phase boundaries. The 
nucleation and growth of microcracks can minimize the local micro-strain energy density; thus, 
the local, residual stresses can act as nuclei for microcracks. The density of nuclei, statistically 
distributed within the material, depends on grain size, i.e. the distance between nuclei, with 
defined values of micro-strain energy density, is material specific. Stress-induced microcracking 
can act as an attractor for elastic damage at the local scale to produce a process zone that acts as 
a sink of strain-energy release on a larger scale, for example, the process zone at a crack front. It 
can be shown that the stress-rate dependent growth of local damage follows a power law which 
quantifies strengthening and softening during slow crack growth, prior to catastrophic crack 
extension. The damage-induced zone, produced by the release of strain energy on the local scale, 
can shield the macrocrack and grow to a critical value at the failure load. The influence of the 
microstructure on damage will be quantified and related to sub-critical and critical crack extension 
in brittle materials. 

1. Scope 
It was the intuition of Griffith 1-1-] to develop a free- 
energy expression for the extension of a slit crack of 
length 2a, in the field of a uniform uniaxial tensile 
stress, or, that sums the decrease in mechanical energy 
(strain energy plus work done by the external load) 
with the crack's thermodynamic surface energy 47a. 
He stated that spontaneous crack extension will occur 
when the differential of the free energy expression is 
less than or equal to zero. This insight leads to the 
well-known fracture equation 

~c = r ~ -  (11 

where Yis a numerical constant related to the specific 
type of crack and loading direction, E is Young's 
modulus and o~ is the ultimate stress. Griffith nearly 
verified Equation 1 with the dynamic fracture of glass, 
where he experimentally determined that 

2 a ~  = constant (2) 

Glass can be considered a nearly homogeneous 
material with inhomogeneities in the size scale of 
< 1 nm. Such inhomogeneities do not significantly 

influence the crack path. However, during fracture of 
most other brittle materials, the measured values of 
energy dissipation rate, G~, can be more than one 
order of magnitude greater than the specific surface 
energy, i.e. Gc > 27. The size scale of heterogeneities in 
this class of materials is between 0.1 gm and 1 mm. 
Thus, the crack path becomes microscopically very 
tortuous with the production of a highly distorted 
material along the fracture surface. The difference 
between Gc and 7 indicates the influence of the distor- 
tion produced by a non-linear, elastic deformation 
and irreversible shape changes within a process zone. 

To quantify the observed high-energy dissipation 
rate during fracture, Neuber [2-] and Irwin I-3, 4] pos- 
tulated, with the mean stress theory, a process zone of 
size 2w ahead of the tip of a crack. At the beginning 
of the seventies, it was recognized simultaneously by 
Hoagland and Hann [5] and the present author [-6, 7-] 
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that the process zone is a consequence of stress- 
induced microcracking due to the release of thermo- 
mechanical mismatch strains which arise at phase and 
grain boundaries within brittle materials during fab- 
rication. The size of the process zone, 2w, and the 
fracture energy, G~, are material-specific parameters. 
They become critical at a material state which is 
related to a critical strain energy density given by 

Gc 
2we 

(3) 

O'mc was introduced by Neuber [2] as the notch frac- 
ture strength or the cohesion strength of the process 
zone. Physically, (Ym is the stress at which a critical 
state of the local damage exists within a zone of size 
2w, where favourably oriented, stress-induced micro- 
cracks coalesce with a macrocrack. By analogy, (5" m 
corresponds to the yon Mises stress, as failure should 
occur as a consequence of dissipative processes. With 
the analogy to metals, failure occurs as a critical dis- 
tortional strain-energy density absorbed by the mater- 
ial equals the energy density stored in the material 
loaded in uniaxial tension at yield. It was found 
experimentally, as well as theoretically, that gmo 
corresponds to the tensile strength in uniaxial loading 
I-6-9]. 

Thus, the strain-energy density in the process zone 
is composed of two parts, i.e. the distortional part 
associated with damage, and the volumetric part 
associated with Hookian elastic strain. The Griffith 
theorem characterizes the pure opening mode of crack 
extension due to the Hookian strain-energy density. 
Fracture in brittle, disordered materials arises when 
the ratio in Equation (3) becomes critical, that is, as 
w ~ we, which happens at a minimum value of the 
strain-energy density as reported by Sih [10]. With 
a critical notch fracture strength, ~m, at the boundary 
of the process zone and the surrounding elastic mater- 
ial, the strain-energy release rate of a stationary crack, 
which is embedded in a local damage zone of stress- 
induced microcracks can be written as 

2we 
G~ = Cy2m~ E (4) 

Stress-induced microcracking is the origin of the 
elastic damage; analogous to metals where deforma- 
tion via dislocations produces plastic damage, micro- 
cracking and the opening displacements produced 
by the microcracking produces the elastic damage. 
Elastic damage becomes localized if stress-induced 
microcracking is confined to a highly stressed region 
which arises, for example, ahead of a crack or notch 
[8-17]. The microcrack-induced elastic damage re- 
duces the effective axial Young's modulus inside the 
process zone to Era. The elastic strain-energy density 
of the process zone after unloading is given as [ 12-17] 
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which is the crack-driving force during slow, stable 
crack growth in brittle materials. Equation 5 is the 
residual elastic strain-energy density stored in the 
microcracked process zone during stable crack growth 
[16, 17]. Similar effects were also reported by Atkins 
and Mai [15] during stable crack growth in adhesive 
joints. 

Here, we will extend this work with a continuum 
mechanics analysis supported by experimental results 
concerning localized, elastic damage. It will be demon- 
strated that an elastic damage zone develops during 
stable crack growth in the strengthening range of 
a load-displacement curve for fracture mechanics spe- 
cimens to the ultimate load, Pe ult, which is equivalent 
to a critical value of Equation 4. Physically, P~ ult is 
a consequence of the elastic collapse within the dam- 
age zone, followed by elastic softening. The ultimate 
load can be defined as a bifurcation point due to the 
synergetic effect of damage and crack growth with 
a discrete jump of elastic strain-energy release rate 
during slow crack growth. 

Thus, the relationship originally developed by 
Griffith between the strain energy release rate and the 
surface energy will be extended. The increase of the 
crack growth resistance during crack growth has to be 
related to the surface energy of multiple microcracks 
inside the damage zone of size 2w. However, it is not 
only the increase of surface energy of the microcracks 
which contributes tO energy dissipation. More import- 
ant is the effect of the residual strains due to the 
cumulative, opening displacement of microcracks 
within the process zone, constrained by the surround- 
ing elastic material. The effect of these residual strains 
at the boundary between the damage zone and the 
elastic material contributes to the rate of the elastic 
strain-energy density during stable crack growth. This 
will be explained in the following sections on the basis 
of the elastic-plastic beam theory in analogy to 
a double-cantilever beam (DCB), single-edge notch 
beam (SENB) and three-point bend specimens. 

2. Elastic damage 
2.1. Influence of localized, 

thermo-mechanical residual stresses 
We will discuss elastic damage in some ceramics such 
as alumina, silicon nitride and C/SiC composites, with 
experimental results from the literature which were 
observed during fracture mechanics determinations 
with DCB and SENB specimens. The material prop- 
erties and the experimental facilities are documented 
elsewhere [11, 16-28]. 

During the loading of a beam of a polycrystalline, 
brittle material (Fig. la) the displacement deviates 
from linearity if the load, Pe, exceeds at Y the load of 
the elastic limit, Pe > PE as shown in Fig. lb [16, 17]. 
In brittle materials, stress-induced microcracking can 
be responsible for this non-linear effect. This arises if 
the superposition of the residual microstrain-energy 
density with the macrostrain-energy density reaches 
a critical value of the specific surface energy, 27, at 
a grain boundary of length 2am [12-14]. Thus, 
stress-induced microcracking takes place at specific 



grain-boundary sites of length 2a m and the elastic 
strain-energy density at the elastic limit is given by 

0'2 E2A2 7 

2E + 24(1 - v 2) > --am (6) 

The first term in Equation 6 represents the elastic 
strain-energy density of the external stress field, 
whereas the second term is due to the residual micro- 
strain-energy density at grain and/or phase bound- 
aries; e is the thermal mechanical strain AaAT where 

is coefficient of thermal expansion and T is temper- 
ature. The parameter A(0 < A < 1) is related to the 
crystallographic orientation of grains, and thus, the 
orientation of the microcrack [29]. TypicaUy, 
the value of the residual strain-energy density is 

3.6x 104Nm -2, whereas the right-hand side of 
Equation 6 is ~ 105 N m-  2 (e.g. alumina with a mean 
grain size of 10 gm). Thus, the elastic limit of Equation 
6 decreases with increasing grain-boundary size, 
namely, microcracking arises first at sites in the micro- 
structure with the lowest value of the microstrain- 
energy density, i.e. at grain boundaries where 
am = amax. 
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To quantify the relations between the microcrack 
size, 2am, and their relative separation distance, x/2am, 
we will assume that each facet or grain of size 2am is 
surrounded with a sphere of the same size which is 
embedded in an infinite matrix. Both spheres and 
matrix are assumed isotropic with common Young's 
modulus, E, and Poisson's ratio, v. A penny-shaped 
crack is nucleated and arrests at the interface of the 
grain and the matrix. With these assumptions, we can 
estimate x/2a m with the following formula introduced 
by Koks [30] 

X 
- [(2rc/313) 1/2 -- x/2] (7) 

2ar. 

where 13 is the fraction of grain boundaries containing 
microcracks. 

Specifically, in a single-phase, polycrystalline 
alumina [11-14, 16, 17, 22-26], at stresses not far 
beyond the elastic limit, the density of microcracks is 
relatively low because the fraction of the largest grains 
(size 2am,x = 40 gm) is ,,~ 1% [25, 26]. At this state of 
damage, the relative distance between the largest grain 
boundaries is determined, with Equation 7 to be 
x/2am ,~ 13. 

Damage becomes localized when smaller grain 
boundaries am < amax become involved in the stress- 
induced microcracking process within the volume of 

Figure 1 Deformation of an elasto-plastic beam: (a) Rotation of the 
elasto-plastic beam with thickness B and width 2h. (b) Schematic 
load~tisplacement record with unloading at G at constant crack 
length a and after crack growth a + Aa with elastic and inelastic 
displacement ue and ur. 
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increasing strain-energy density [11-14] ahead of the 
macrocrack. The density of microcracks can increase 
to a critical value [~ --- 13c. Specifically, this happens in 
the highly stressed elastic damaged outer strips of size 
2w of the inhomogeneously loaded beam during 
strengthening, whereas the core of the beam deforms 
i nan  elastic manner (Fig. la) [16, 17]. Damage arises 
due to the release of the residual stress during stress- 
induced microcracking. This creates an inelastic strain 
contribution to the material's stress-strain behaviour. 
As proposed by Hutchinson [31], this inelastic 
uniaxial strain contribution increases with the ex- 
ternal stress component, ~e,, normal to the plane of 
the microcracks as 

(1 -- v2~ eye. 
Ae = 1 6 a ~ \ ~ - - - /  E (8) 

Using Equation 8 one can estimate the uniaxial 
dilation strain of a few nanometres for a 10 lam 
microcrack size by assuming a damage zone 
V = V m  ~ -  4 x 10 -~z m 3 and a strain o f o ~ . / E  = 1 0  - 3 .  

Such an inelastic residual strain was experimentally 
qualified by Babilon et al. by small-angle X-ray scat- 
tering (SAXS) [18-22] and with acoustic emission 
analysis (AE) by Sklarczyk [23] who used SENB and 
DCB specimens of alumina. For a mean grain size of 
10 pm, Fig. 2 shows the microcrack distribution ahead 
of a notch at a load above the elastic limit but before 
crack growth starts at a load Po with PE < P~ < P0 as 
a result of SAXS and AE measurements. The frac- 
tional microcrack density, 13, increases to 120% with 
respect to the unstressed material at the edges of the 
notch, which had a width of ~ 150 pro. 

During stressing, both the zone size and the number 
density of microcracks at the crack tip were observed 
to increase during stable crack growth by SAXS 
[18-22], AE [23] and directly with a travelling micro- 
scope by B/irr [25, 26]. About 90% of the microcracks 
are oriented within an angle of 40 ~ from the crack 
plane and were predominantly collinear aligned 
[18-22]. Favourably oriented microcracks coalesce 
during each step of incremental growth of the macro- 

crack when x/2am ~ 2. With these data and Equation 
7, the critical microcrack density is determined as 
[3, > 0.16. The saturation arises after the initial crack 
grows ~ 1 mm at the ultimate load. These data 
strongly suggest that the critical microcrack nuclei, 13c, 
is limited and agrees very well with foregoing numer- 
ical and experimental results when 13~ = 0.2 [12-14]. 

At each instantaneous coalescence of microcracks, 
the strain-energy density (see Equation 5) is at a min- 
imum and the microcracks close and would never 
be experimentally seen [25-28]. Thus, the growth of 
a microcrack is energetically quantified and jumps up 
by an incremental length, Aa, equal to the process 
zone, Aa = 2w ~ 100 gm for this specific material. Fig. 
3 shows a sinusoidal-shaped damage zone after slow 
and rapid cracking observed by Frei et al. [27, 28] in 
a fine-grained alumina after microcrack decoration 
[32]. It shows a small damage zone during rapid crack 
growth and a wider damage zone during stable crack 
growth. In addition, the incremental crack growth 
with regions of high and low microcrack densities 
during slow crack growth are observed [32]. The 
incremental crack growth, Aa, is about three to five 
times the maximum grain size. Slow crack growth, in 
discrete incremental steps, with unloading-reloading 
events were also observed in graphite [33, 34]. 
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Figure 2 Distribution of relative increase of stress-induced micro- 
crack density, 13, in alumina ahead of a notch of width of 150 pm 
versus distance from the notch root mid-point at a load Pe with 
PE < Pc < Po from Babilon et al. [22-24]. 
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Figure3 Decorated damage zones in a fine grained alumina 
(Buresch et al. [32]) in the wake of a stable and an unstable grown 
crack (Frei et al. [27, 28]) with large and small widths of damage 
zones. 



Fig. 4 shows the microcrack density in the damage 
zone of alumina as a function of the residual crack- 
opening displacement as measured at different distan- 
ces from the fracture surface (up to 240 gm) with 
SAXS. Fig. 5 shows the peak values from these SAXS 
measurements, illustrating that the size of the damage 
zone and the density of microcracks linearly decreases 
with the distance from the fracture surface and with 
increasing loading rate [12-14, 18-28, 33, 34]. During 
reloading (up to 80% of the initial load) the micro- 
crack density distribution at different distances from 
the fracture surface is nearly constant. However, an 
additional elastic opening due to microcracks arises 
specifically in a range of about 5 mm behind the crack 
tip at distances larger than about 60 pm from the 
fracture surface. 

The damage zone is divided into two parts. The 
inner zone, close to the fracture surface with a width of 
about 5(~100 gm for the two different alumina ceram- 
ics, is unaffected by reloading. In the second part, 
i.e. for microcracks beyond 100 gm and up to 200 gm 
from the fracture surface, the microcracks are elast- 
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Figure 4 Frequency distribution of microcrack densities, [3, in the 
damage zone of an alumina DCB specimen after ( ), unloading 
and under ( - - - )  reloading [25, 26] at different distances from the 
fracture surface. 
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Figure 5 Influence of the crack velocity on the distribution of the 
relative increase of the stress-induced microcrack density, 13, in the 
depth of damage zones and on the size of the total damage zone, 
R, of cracks in two aluminas with predominant intercrystalline 
and transcrystalline fracture versus distance from crack surface of 
(a) slowly and (b) rapidly growing cracks (Babilon et al. [22 24]). 
( - - )  AF997 intercrystalline, ( - - ~  B40 transcrystalline. 

ically opened by reloading. This division corresponds 
to the break of the slopes of the curves of Fig. 5. In the 
inner zone, Pangraz et al. [24] measured a reduction 
of the modulus of about 10%, whereas in the outer 
zone, the reduction is only 5%. Thus, the microcracks 
in the inner zone characterize the active damage zone 
which is shielded from the external stress field by the 
residual stress field of the damage zone. 

Thus, the size and the microcrack density of the 
damage zone of a stable growing crack are related to 
microstructural features such as the grain-size dis- 
tribution. The characteristic length of a material 
connects sites with values of minimum micro-strain- 
energy densities (Equation 5) and influences the in- 
cremental crack growth and the size of the damage 
zone as pointed out by Sih [10]. Thus, failure of 
a material is a synergetic effect of the development of 
a damage growth and of crack growth as discussed in 
the next sections. 

2.2. Local damage and residual stresses 
w i t h i n  the process zone 

The stress-induced microcracking reduces the Young's 
modulus in the active, damaged zone to Em and the 
compliance after unloading (see Fig. lb). Thus, the 
unloading reloading events in the damage zone dur- 
ing each incremental stable crack growth changes the 
strain-energy density and induces first-order residual 
strains [(~m/Em) -- (tyro/E)] on the boundary between 
the damage zone and the elastic material. The dissi- 
pated energy is stored partly as residual elastic strain 
energy in the damage zone given as 

gr = g a -  gE 

= aB (Jm Em 

where B is the body thickness, 2h its width, and a its 
length. It is assumed that the length of the beam 
corresponds to the length of the crack in a DCB 
specimen (Fig. la). Residual stresses also build up in 
the plastic zone during irreversible deformation of 
metals after unloading, as shown by Neuber [2], 
Atkins and Mai [15] and Pintschovius et al. [35]. 

In addition, it was shown that energy is dissipated 
during the irreversible straining of the process zone 
during stress-induced elastic damage 

Udis s = BO.2mW 2 a (10) 
hEm 

Thus, the area Oygf in Fig. lb is the work which is 
done on the body during the elastic and inelastic 
deformation, which is 

U G = Uel -.~ Ur + Udiss 

2aw[h  3(E--  Em) wE] 
= B c % ~  + Em + hE-s (1!) 

Neglecting the third term when h/w ~> 1, the change of 
the critical strain-energy density with an incremental 
crack growth with respect to the damaged volume, 
Vm ---- awB, can be written, equivalent to Equation 5, 
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a s  

dUe _ CY2mF(E --_Em)~ 
dVm Em J 

Jm 
- (12) 

2w 

The residual strain-energy density (Equations 5 and 
12) of the process zone determines the flux of energy 
through the boundary of the damage zone and the 
elastic material, which is the characteristic length 2w 
and, in this case, the contour of the J-integral [36]. 
Thus, Jm is the effective driving force for the growth 
of a stable crack in brittle polycrystalline (and/or 
polyphase) materials [16, 17]. 

However, the residual elastic macrostrain-energy 
density of the damage front (Equation 12) corresponds 
to a dissipated residual microstrain-energy density. 
With the related surface energy, 2y/am of an individual 
microcrack given as o2/2E = "f/am, it is reasonable to 
assume that the total dissipated microstrain-energy 
density increases linearly with the microcrack poros- 
ity, [3, as 

dU, _ 7 [3 (13a) 
d V  a m 

This corresponds to Equation 8 introduced by 
Hutchinson [31] as the additional strain-energy 
density of a loaded microcrack is proportional to the 
related surface energy 7~am 

dUr AN 
- -  O ' e n  - -  dV N 

= 1613(1 - v 2) ---7 (13b) 
. 3  a m �9 

In the current notation, the scaling factor 16/3 
( 1 -  v 2) in Equation 13a is not present. With this 
simplification, the rate of the dissipated microstrain- 
energy density on the contour 2w follows as 

Jr = 213w Y-.  (14) 
am 

Equivalence of the macro- and microstrain-energy 
densities yields, with Equations 12 and 14, the cohe- 
sion strength on the boundary between the damage 
zone and the elastic material as [16, 17] 

0 m ~ -  Im(ZyE/am) 1/2 (15) 

where Im is the crack-tip shielding function. I m 

increases with the microcrack density, 13, and the 
reduced Young's modulus, Era, a s  is shown in Fig. 6 

Em 
I2m = [ 3 - -  (16a) 

E -- Em 

or after some rearrangement 

Gm(I~a) 1/2 
Im -- 

Ko 

Km 
- (16b) 

K0 

where Km= CYm(~a) 1/2 and Ko = (27E) 1/2 are the 
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Figure 6 Crack-shielding function for uniaxial loading I m = ~Em/ 
(E - Era) versus related reduced Young's modulus,  Em/E, with the 
density 13, of normal oriented microcracks as the parameter (Equa- 
tion 16). 

stress-intensity factors of cracks with and without 
a microcracked, process zone. With respect to micro- 
crack systems of parallel and collinear oriented cracks, 
Equation 16a gives a good correlation with values 
from the literature [16, 17]. With Equations 15 and 16, 
the microcrack density can be described with 

E - Em 
13 = 1 2 _  (17) 

Em 

or substituting Equation 16 as 

a[ s l 13 = ~ 2  ~ -  (18) 
Km 

Physically, CYm corresponds to the strength of a Grif- 
fith-crack multiplied with Im. CYm decreases with in- 
creasing grain size and increases with I m. In addition, 
CYm increases with the density of parallel oriented 
microcracks [12-14, 16, 17]. This beneficial effect on 
the toughness was also pointed out by Hutchinson 
[31]. In the limit of a non-damaged material, 13 --+ 0 
and Im --* 1 [16, 17]. Thus, by combining Equations 
12-16 with Equation 5, the strain-energy release rate, 



at the microscale of a stationary crack can be ex- 
pressed as 

JR = wI 2 2_~ (19) 
am 

However, during crack growth, the rate of the residual 
strain-energy density increases due to the inhomo- 
geneous growth of the damaged zone, which can be 
characterized by the tearing modulus Tj = dJ/da. 
Thus, during the steady-state growth of the crack the 
energy release rate at the microscale is expressed as 

.. f( = - -  + w d wI 2 da (20a) 
am 

which can be restated, using Equation 13a, as 

//Ko~22T w~ d/w/Ko'~2 2T~ /da"  

(20b) 

The first term on the right-hand side characterizes the 
opening mode of stable crack growth, whereas the 
second term is due to the rate in which the damage 
created by the microcrack zone dissipates the strain- 
energy density. 

The distribution and strain-energy densities within 
the process zone and the localized, thermo-mechanical 
residual stresses in a microstructure are linked with 
the distortional strain energy per unit volume. This 
term characterizes the deviation from linearity of 
a load-displacement record which will be shown in 
the following section. 

3. Damage growth and crack growth 
3.1. Interpretat ion of load-d isp lacement  

c u rves 
As shown in the foregoing sections, failure of polycrys- 
talline, brittle materials is governed by two rate pro- 
cesses, i.e. a dilatational effect due to crack growth 
(Equation 1), and a distortional effect due to the 
growth of a damaged zone (Equations 12 and 20b). 
The relative proportions of dilatation and distortion 
depend on the load history and location. Experi- 
mental, as well as theoretical, evaluations indicate that 
a local increase in damage due to microcracking 
can induce a critical assembly and interaction of 
microcracks which give rise to an incipiency of 
a macrocrack. Thus, growth of local damage due to 
microcracking can act as a prerequisite to crack 
growth whereby inhomogeneously distributed, non- 
local residual microstrains are partly converted into 
damage which induce residual macrostrains within the 
process zone. 

The residual stresses in the local damage zone due 
to the anisotropic shape change of volume elements 
within the process zone of a growing crack are com- 
pressive inside and tangential tensile outside the zone. 
The residual stresses induce an internal bending 
moment in the specimen as the stress-induced micro- 
cracks build up a displacement discontinuity at the 
border of the zone ahead and in the wake of the stable 
growing crack. This is also observed for adhesive 
joints if residual stresses are built up during the joining 

process [15]. As a consequence, a residual compres- 
sive force, Pr, induces an internal bending moment, 
Mr, i.e. Mr = apt with the crack length a and induces, 
in addition, a tangential, tensile stress at the crack 
surfaces. This was measured for an alumina ceramic 
with X-ray stress analysis by Mishima et al. [37]. 
Thus, as the internal bending moment induces an 
offset after unloading a cracked component, cyclic 
load~tisplacement curves for materials that experi- 
enced slow crack growth are characterized by a con- 
tinuous shift of the elastic compliance. This is shown 
in Figs 7-9 for a fibre-reinforced composite of SiC 
(chemical vapour infiltration of SiC into laminated, 
carbon fibre cloth), a high-purity alumina at room 
temperature and a silicon nitride at 1200 ~ respect- 
ively [-38-46]. 

As mentioned above, in the local elastic damage 
zone around a stably growing crack in brittle, poly- 
crystalline materials, the effective axial Young's 
modulus is reduced by ~ 10%. This is known for 
composites [47] as shown in Fig. 7, and was also 
measured with a scanning acoustic microscope (SAM) 
on a polycrystalline alumina [24]. The microcracks in 
bend specimens are highly oriented normal to the 
principal tensile stress which promotes agglomeration 
of favourable oriented microcracks to the macrocrack. 
This is first observed at the load, Po, of a load-  
displacement record as depicted in Figs 7-9. With 
increasing external load above the load Po, up to the 
ultimate load, Pmax, a range is characterized by in- 
creasing damage, i.e. an increasing size of the damage 
zone and of the microcrack density. As shown in Fig. 
9 for silicon nitride, the increasing damage induces an 
increasing residual compressive load, Pr, after unload- 
ing and an increasing residual offset, ur. The ultimate 
load defines the critical damage state (CDS) [47] with 
a saturated microcrack density, ~ -* ~ .  

Atkins and Mai [15] showed that Pr could be either 
graphically or numerically quantified by extending the 
local compliance lines of the loading-unloading loop 
to negative values. The crossing points define a speci- 
fic crack length which is constant during each cycle. 
Extended compliance lines cross on the envelope 
which defines the locus of zero strain-energy release 
rate, GR, of the material. The rate of the residual, 
compressive force, Pr, with crack length for silicon 
nitride at 1200 ~ is shown in Fig. 10. This follows 
from Fig. 9 as subsequent local compliance lines of 
subsequent incremental crack growth cross at the 
curve of zero crack resistance, GR = 0. At this curve, 
the external bending moment equals the residual 
bending moment, Me = - M r .  The respective local 
compliance values follow with Equation ) as 
Cr = ur/P~. 

Thus, three areas can be specified under the load-  
displacement curve with respect to an incremental 
crack growth of Aa, which is shown in the insert of 
Fig. 9. These are two triangles and one trapezoid. The 
triangles are associated with the elastic strain energies 
of the external and the internal loads (Peud2) and 
(Pr Ud2), respectively, and the trapezoid to the dissi- 
pated energy of the external load Pe u ,  The elastic and 
dissipated strain energy of a specimen, with thickness 
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As proposed by Atkins and Mai [15] we describe 
the elastic, u~, and the inelastic, u~, displacements of 
a bend specimen with crack length, a, for the specific 
problem by 
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Figure 7 (a) Cyclic load~lisplacement record at room temperature 
of a C-SiC composite (Gomina et al. [43]) with extended compli- 
ance lines at constant  crack length a. (b) Load-displacement record 
with incremental crack growth Aa = ai+ 1 - aL. 

U = U e 4- Ur 

pea 3 za n 

- E I  + h-i- (22) 

with the moment of inertia, I, and the power exponent, 
n, in the range 0 < n < 3. To obtain a numerically 
tractable form of Equation 22 we substitute the 
power-law function 

Z ~- Pr a3-n (23) 

and define with Equations 24 and 25 below, the 
macroscopic crack resistance, GR, and a moment of 
crack resistance as a function of external and internal 
bending moments M~ = Pea and Mr = Pra 

3P~ az PePr a2 pr2 a 2 

GR -- 2EI + E---~- + 2E~f (24) 

which yields 

3 F n M  + + (1 ; ) M ~ I  (25) ~ [ ~ (  e Mr)  2 - -  

The first and third terms of Equation 24 describe the 
opening mode of crack extension due to the dilata- 
tional strain energy, whereas the second term is a 
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Figure 8 Cyclic load~lisplacement record at room temperature of 
an alumina (Osterstock et al. [11, 41, 42, 44]) with extended compli- 
ance lines at constant crack length, a. 

consequence of the distortional strain energy and 
describes the damage of the process zone. The signifi- 
cance of the power exponent, n, is obvious from Equa- 
tion 25 as the last term characterizes the dissipative 
work of the external force during damage by slow 
crack growth when n < 3. 

At the maximum crack-growth resistance, namely 
n = 3, the last term of Equation 25 vanishes and 
the moment, AIR, instantaneously increases. Conse- 
quently, Equation 26 is well known, e.g. from 
Michener and Burns [48], and is only valid in the 
range of elastic softening with n = 3 

3 
M 2 = 5(Me 4- Mr) 2 (26) 

The strengthening exponent n ( <  3) quantifies the 
material-specific nucleation, growth and coalescence 
of stress-induced microcracks, i.e. the growth rate of 
damage which depends on the microstructure, loading 
rate and load history. Equation 24 is quadratic relat- 
ive to the external and internal loads and can be 
solved for the related external load as 

Pr - 3 + - 3 + 3 \ G r l E B J J  (27) 

In the strengthening range of a stress-strain curve 
with n < 3, the compliance lines become relatively 
steeper with increasing crack length up to the ultimate 

P~ox " 
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(b) u.  : m e u, + ~ Pe u, + P, u, 

Figure 9 (a) Cyclic load-displacement record at 1200~ of a sil- 
icon-nitride (Bodur [45, 46]) with extended compliance lines at 
constant crack length, a. (b) Schematic energy balance with elastic 
and residual displacements Ue and ur at crack lengths a and a + Aa. 

load as n --* 3. Thus, the crossing points of subsequent 
compliance lines during incremental crack growth 
cross during this stage at increasing residual loads, Pr, 
which are negative and caused by the dilation of 
microcracks within the process zone. In contrast, in 
the elasto-softening regime, with n = 3, the material 
behaves as an ideal linear elastic material and sub- 
sequent compliance lines cross with increasing crack 
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Figure 10 Residual compressive force Pr versus crack length a of 
silicon nitride at 1200~ of Fig. 9. 

length at smaller residual loads. Experimental evid- 
ence of this behaviour is reported for silicon nitride 
[45, 46] at high temperature and quantitatively for an 
alumina at room temperature [25, 26]. 

3.2. Crack-growth resistance 
To optimize the performance of a component of 
a brittle material for a specific application and to 
reveal the influence of the microstructure on the fail- 
ure, the crack resistance, GR, must be quantified with 
respect to the macromechanical damage parameters. 
The damage parameters must be evaluated from the 
non-linear load-displacement curves for DCB and 
SENB specimens to quantify the dilatational and 
distortional terms, Ge and Gr, in 

G R = Ge + G~ 

= ( ' 2 ' ]  tiC+ (~2) dur (28, 
\2BJ da + d~a 

With unloading reloading cycles, the external and 
residual load, Po and Pr, the local elastic compliance, 
Ce, and the residual displacement, u+, must be evalu- 
ated as a function of the increasing measured crack 
length. This procedure was used in evaluating the 
crack resistance of alumina at room temperature by 
Osterstock et al. [11, 44] and silicon nitride at 1200 ~ 
by Bodur etal .  [11, 38-40, 45, 46] using SENB speci- 
men configurations. 

The crack-resistance curves of Fig. 11 for alumina 
and Fig. 12 for silicon nitride show distinct maxima 
which correlate with the ultimate load where both the 
size of the damage zone and the microcrack density 
reach their critical values, i.e. at the minimum value of 
the strain-energy density (Equation 4). Also, at the 
maximum load, the moments of crack resistance 
change from Equation 25 to Equation 26. This change 
demonstrates a change in the rate-determining pro- 
cess, i.e. from strengthening by growth of the damage 
zone to elasto-softening by crack growth. Equivalent, 
with respect to Equations 22-26, evaluations of the 
residual offset displacement, u+, as a function of crack 
length from the load-displacement curves are shown 
on the logarithmic scale in Fig. 13 for alumina. These 
curves demonstrate a break in the exponent at a crack 
length near the maximum load. Thus, experimental 
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Figure 12 Crack resistance of silicon nitride at 1200~ 
GR = Ge + G~ with elastic and inelastic fractions Ge and G, (Equa- 
tion 31) versus crack length, a, evaluated from Fig. 9. 

results show that before the maximum load, i.e. during 
strengthening, the exponent, n, in the power law Equa- 
tion 20a is smaller than after the maximum load. The 
exponent is 3, beyond the maximum load in the case of 
alumina at room temperature, which indicates elastic 
softening as theoretically proposed in Equation 22. 

The increase in crack resistance up to the maximum 
value is a consequence of increasing damage due to 
the distortional term, whereas the opening mode of 
crack growth seems to be slightly effected by damage. 
The ultimate load describes the critical damage state 
(CDS) with saturated damage as  it follows experi- 
mentally 

d G r  
- 0 (29 )  

da 



2 

g 

5 
1 

AF-997; air 

i 

e 

g n = 2 . 8  

0 = 3  t, 

As-sintered 

n = 1.08 
/ 5 x 0.shock 

/ 900~  -->RT 
or 

t 1000~ --~RT 
), n = 2.04 
/ 

t 

,J 
-1 

-1  I l 

-2 0 1 
Ln A a  (mm) 

Figure 13 Residual displacement, ur, of alumina versus stable crack 
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elasticstrengthening (n = 1.08) in the as-received state (high density 
of microcrack nuclei) and n = 2.04 in the pre-damaged state after 
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at n = 3 and Pe = -- Pr (Equation 27). Physically, the 
ultimate load defines a bifurcation point as the elastic 
energy release rate increases during the break from the 
strengthening to the softening range by the amount of 

AGR 3 - n 
- (30) 

GR 4 

which follows from Equation 24. 

comes critical and equals the strain-energy density 
induced in uniaxial loading at yield due to agglom- 
eration of favourably oriented microcracks within the 
damage zone, namely, Jm/2W = Jmd2We. The macro- 
strain-energy density ry2/2E = GR/2w increases with 
increasing zone size, 2w, up to the critical value 
O2mJ2E = GRo/2Wc (Equation 4) with an incrementally 
growing stable crack. 

Stress-activated microcrack nuclei reflect the 
heterogeneity of the stress field in the material. The 
heterogeneity of the stress field results from the micro- 
structure at .grain and phase boundaries including 
reinforcements such as fibres. In the local damage 
zone, the stress field is homogenized and experimental 
results show that the microcrack field of the process 
zone in polycrystals is orthotropic as proposed by Sih 
[10]. The microcracks are predominantly oriented 
parallel to the macrocrack as revealed by Babilon 
et al. [18 22, 24] with SAXS measurements and also 
by direct microstructure observations [16, 17]. 

During increasing crack-growth resistance, up to 
a critical damage zone size 2we, the damage zone with 
a maximum value of macrostrain-energy density of 
the global stress field the crack resistance reaches its 
maximum value, i.e. (dU/dV)~ = Q/2wc (Equation 3). 
At this point, the residual compressive force within 
the process zone equals the external load Po = - Pr. 
Then, the boundary of the process zone is free of 
normal stress as experimentally observed with photo- 
elastic coatings of a graphite. It was found that the 
principal axis rotates by 90 ~ during loading up to the 
maximum load [33]. Thus, the crack surfaces do not 
transfer normal stresses. This agrees with SAXS meas- 
urements because the elastic displacement of the open- 
ing of the microcracks inside the active damage zone 
of a crack with a length of 15 mm of a polycrystalline 
alumina during unloading-reloading is constant. Fig. 
14 [18 22, 24] shows that inside the active damage 
zone, with a width of ~ 100 gm, the elastic displace- 
ment of the microcrack opening is not influenced by 
reloading events. This crack-tip shielding effect of the 

4. Discussion 
4 .1 .  G e n e r a l  r e m a r k s  

Delayed failure of brittle disordered materials due 
to static or cyclic loading is a synergetic effect of two 
quasi independent phenomena, i.e. damage growth 
and stable crack growth. In the macroscate, non-local 
elastic damage starts at the elastic limit (Equation 6), 
i.e. at sinks of microstrain in a microstructure where 
there are statistically distributed nuclei for micro- 
cracks. Thus, in the microscale, the sinks of minimum 
values of microstrain energy are domains of maximum 
values of residual microstress concentrations which 
arise, for example, at triple points of the largest grain 
boundaries in polycrystals. Above the elastic limit, 
more and more microcrack nuclei arise, i.e. those with 
decreasing facet size a m (Equation 6), to produce 
microcracks with an increasing local damage zone 
of size 2w (Equation 3). Thus, following the yon 
Mises Henky criterion, crack growth starts if the 
macrostrain-energy density (Equations 5 and 12) be- 
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Figure 14 Infuence of an external load on the residual elastic open- 
ing-displacement (nm) of nominally normal oriented penny-shaped 
microcracks at different positions in the damage zone between 20 
and 200 gm from the fracture surface and the length of the macro- 
crack in alumina (B/Jr [25, 26]). ( ~ )  Loaded, (O) unloaded. 
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process zone is a consequence of stress-induced micro- 
cracking during crack-growth resistance as residual 
stresses due to microcrack opening displacement are 
built up during slow crack growth. 

4.2. Crack-shielding phenomena 
The foregoing continuum mechanics analysis and 
collaborating experimental results of polycrystals 
indicate that stable crack growth with increasing 
crack-growth resistance is governed by the principles 
of minimum values of strain-energy density (SED), 
i.e. a sequence of critical values of the dilatational and 
the distortional macrostrain-energy densities, d Ua/d V 
and dUm/dV, during quantified stepwise stable crack 
growth. The strain-energy release rate during each 
incremental crack step (Equation 12) seems to be at 
a minimum and of the order of some Newtons per 
metre for large-grained alumina suggesting values of 
about Em/E = 0.9 and (cr~/2E) = 0.1 MPa [16, 17]. 
Non-local damage starts at the elastic limit. The elas- 
tic limit decreases with increasing grain size and in- 
creasing residual strain; Equation 6 is known from 
the literature for transformation-toughened ceramics 
[12-14, 16, 17, 48, 49] and also for cementitious ma- 
terials [50]. 

The theoretical and experimental results indicate 
that the toughness increases during strengthening as 
the residual compressive force within the process zone 
increases (Equations 28 and 29) up to the ultimate 
load wtiich defines a bifurcation point and the critical 
damage state (CDS) of a material at the maximum 
crack resistance. Thus, the crack-shielding function, 
Im, reaches its maximum value as a consequence of 
a decreasing stress-intensity factor, Km (Equation 16a) 
of the microcrack field due to parallel-oriented 
microcracks E18, 22, 24]. At the bifurcation point, the 
strain-energy release rate increases by an amount of 
(3 - n)/4 < 1 with respect to the energy release rate of 
stable crack growth during the "strengthening" range 
with n < 3 (Equation 33). 

The beneficial effect of parallel-oriented micro- 
cracks on crack-tip shielding was also reported by 
Hutchinson [31] and others. However, our analysis 
shows clear evidence that the inventory of microcrack 
nucleation is limited because shielding is due to resid- 
ual stresses which are built up during the stress redis- 
tribution processes by unloading/reloading events as 
a consequence of quantified incremental stepwise 
crack growth. This is bounded on the lowest level of 
strain-energy density which fulfils Equation 12. 

At the ultimate load, as measured with polycrystals, 
the reduction of Young's modulus, Em, in the active 
damage zone reaches its critical value of about 
Em< 0.9E, which remains nearly constant during fur- 
ther slow crack growth [16-24, 47]. With this, we can 
physically interpret the toughness of a material as its 
ability to store a high density of metastable, pinned 
microcracks which is equivalent to the initial, residual 
strain-energy density associated with the grain/phase 
boundaries. The microcracked zone can also be 
viewed as lowering Young's modulus at the crack 
front, to enhance the strength of a Griffith crack 
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(Equation 1) in elastically damaged materials [12-14, 
16, 17]. Thus, it can be stated that the toughness of 
material increases with increasing density of micro- 
crack nuclei. This is measured in composites, which 
are very heterogeneous [12-14, 16, 17], such as fibre- 
reinforced or transformation-toughened ceramics 
with a very heterogeneous microcrack structure 
[48, 49]. 

Obviously, the aforementioned experimental results 
seem to indicate that a crack does not transfer normal 
stresses, e.g. via bridging the macroscopic crack sur- 
faces during the elasto-softening range as the bound- 
ary of the damage zone is elastically unloaded. This 
was also proposed by Bui and Ehrlacher [36]. Thus, 
the experimental results make it evident that the 
microcracks at the crack front and in the wake are 
elastically shielded by the residual stress field of the 
damage zone. With a maximum external force of 
40 N of the load-displacement record for the alumina 
of Fig. 14 and a size of the process zone of 
2Wmax = 100 gm [16], the notch fracture strength, ~m 
(Equation 14) at the crack tip reaches values in the 
range of some gigapascals. This high shielding strength 
was also evaluated in a previous work using energy 
consideration and is expressed by the parameter I m 

which reflects a low K m value. However, this depends 
on the density of microcrack nuclei that become stress 
activated. The inventory of microcrack nuclei of a ma- 
terial increases with the heterogeneity of the micro- 
structure which is equivalent to a decreasing value of 
the power-law exponent, n, in the range of 0 > n > 3. 
If this density decreases, as measured by Osterstock 
et al. [11, 41, 42, 44], e.g. due to stress-induced non- 
local microcracking during thermal cycling, the com- 
pressive strength equivalent to (ZYmc and the crack 
resistance also decrease and n increases, as reported 
above. However, the shielding effect holds only if the 
moment of inertia of the specimen is large enough to 
initiate the effective load-bearing capacity that with- 
stands the residual stresses of the damage zone. 

5. Conclusion 
The importance of the microcracked process zone is 
two-fold. It is a safety factor as it stabilizes a crack, but 
homogeneous microcracking itself lowers strength. To 
optimize a microstructure for a specific application, it 
is important to optimize the standard deviation of the 
distribution of the microcrack nuclei and their local 
strain-energy density, that is, optimizing the grain- 
and phase-size distributions and their differential 
properties that give rise to the microstrains at grain 
and phase boundaries, all of which optimize the size 
of the process zone. Relations between stress-induced 
microcracking and redistribution of localized residual 
stresses to the process zone must be made more quant- 
itative to predict static fatigue from microstructural 
parameters for this class of materials. 
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